4. If
$$f(x) = e^{ax+b}$$
, find $f^{-1}(x)$.

5. If
$$f(x) = \frac{x}{1 - \sqrt{x}}$$
, $x \ge 0$ and $g(x) = 3x + 1$, solve the equation $f^{-1}g(x) = \frac{9}{16}$.

Hint: do not attempt to find $f^{-1}(x)$.

6. A function is defined in the following table:

x	1	2	3	4	5	6	7	8	9
f(x)	7	1	6	4	2	4	9	8	3

- (a) Find $f \circ f(3)$.
- (b) Find $f^{-1}(9)$.

7. Differentiate
$$y = e^{x^2} + \frac{\sin 3x}{2x}$$
.

- **8.** Find the values of x for which the function $f(x) = \ln\left(\frac{2}{x^2 12}\right)$ has a gradient of 2.
- **9.** Given that $f(x) = \frac{x^2 1}{x^2 + 2}$, find f''(x) in the form $\frac{a bx^2}{(x^2 + 2)^3}$.
- **10.** Find the equation of the normal to the curve $y = e^{-3x^2}$ at the point where x = 2.
- 11. A tangent to the curve $y = \tan x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$ is drawn at the point where $x = \frac{\pi}{4}$. Find the x-coordinate of the point where this tangent intersects the curve again.
- **12.** Find and classify the stationary points on the curve $y = x^3 3x + 8$.
- 13. Find and classify the stationary points on the curve $y = x \sin x + \cos x$ for $0 < x < 2\pi$.
- **14.** Find the maximum value of $y = \ln(x \sin^2 x)$ for $0 < x \le 2\pi$.